
CS 4530: Fundamentals of Software Engineering
Module 3.6: React Basics

Adeel Bhutta and Mitch Wand

Khoury College of Computer Sciences

1

© 2025 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Lesson

• By the end of this lesson, you should be able to:
• Understand how the React framework binds data (and

changes to it) to a UI

• Create simple React components that use state and
properties

2

HTML: The Markup Language of the Web

• Language for describing structure
of a document

• Denotes hierarchy of elements

• What might be elements in this
document?

3

Rich, interactive web apps

• Infinite scrolling of cats

4

Typical properties of web app UIs

• Each widget has both visual presentation & logic

• Some widgets occur more than once
• e.g., comment/like widgets

• Changes to data should cause changes to widget
• e.g., new images, new comments should show up in real

time

• Widgets have hierarchical structure

• Action on a widget may affect other widgets
• e.g., clicking on 'like' button executes some logic related

to the widget itself,
• It may also affect the widget that contains the ‘like’

button

5

Components represent
widgets in object-like style

• Organize related logic and presentation
into a single unit
• Includes necessary state and the logic for

updating this state
• Includes presentation for rendering this state

into HTML

• Synchronizes state and visual presentation
• Whenever state changes, HTML should be

rendered again

6

Components
Example: Like button component

• What does the button keep track of?
• Is it liked or not
• What post this is associated with

• What logic does the button have?
• When changing like status, send update to

server

• How does the button look?
• Filled in if liked, hollow if not

7

React is a Framework for Components

• Created by Facebook

• Powerful abstractions for describing UI components

• Official documentation & tutorials: https://reactjs.org/

• Components are constructed in the browser (“front-end”)

• Key concepts:
• Embed HTML in TypeScript
• Track application “state”
• Automatically and efficiently re-render page in browser based on

changes to state
• But: some implementations of React allow components to be pre-

constructed in the server.

8

https://reactjs.org/

React makes it easy to build rich, interactive web
apps (perhaps with infinite scrolling of cats!)

Built with React

Plus, AirBNB, Uber, Pinterest,
Netflix, Twitter and 8855 more

9

React Has a Rich Component Library

10

Installing Chakra for next.js:

• Just say:

npm i -–save @chakra-ui/react @chakra-ui/next-js

npm i --save @emotion/react @emotion/styled framer-motion

11

Embedding HTML in TypeScript
Aka JSX or TSX
• How do you embed HTML in

TypeScript and get syntax checking?

• Idea: extend the language: JSX, TSX
• JavaScript (or TypeScript) language,

with additional feature that
expressions may be HTML

• It’s a new language
• Browsers do not natively run JSX (or

TypeScript)
• We use build tools that compile

everything into JavaScript

12

JSX/TSX Embeds HTML in TypeScript

• Example:

• HTML embedded in TypeScript
• HTML can be used as an expression
• HTML is checked for correct syntax

• Can use { expr } to evaluate an expression and return a
value
• e.g., { 5 + 2 }, { foo() }

• To wrap on multiple lines, wrap the TSX/JSX in
parentheses (…)

• Value of expression is a piece of HTML

return <div>Hello {someVariable}</div>;

13

import * as React from 'react';
import { Heading, VStack } from '@chakra-ui/react';

function HelloWorldComponent() {
return (

<VStack>
<Heading>Hello World</Heading>

</VStack>
)

}

Hello World in React

“Return this HTML whenever the
component is rendered”

The HTML is dynamically
generated by the library.

src/app/Apps/HelloWorld.tsx

14

Start your app by importing it into
src/app/page.tsx

'use client'; // this app is client-side only.

import App from './Apps/HelloWorldApp' // or from wherever you app lives
// import App from './Apps/HelloWorldDave'
// import App from './Apps/App1';

export default function HomePage() {
return (

<ChakraProvider>
<App />

</ChakraProvider>
)

}

src/app/page.tsx

15

React Components are Little Machines

• They start with input from their creator (parent) (props)

• They have additional local state ("component state")

• They retain their local state when their parent's state
changes

• They may change their local state in response to
external stimuli (button presses, etc.)

• They re-render when their local state changes, or when
they are re-created by their parent with different props.

16

Component State is Data That Changes

• State is created by useState.

• The state is accessed through state variables in
the component.

• The first variable is the accessor, the second is
the setter.

• The only way to change the value of a state
variable is with the setter

• In general, the state consists of several
variables.

• The component only re-renders after its local
state changes

import { useState } from 'react';
function Foo() {
const [count, setCount] = useState(0)
….
}

You could choose any names for the variable and its
setter; for this class, please follow the naming
convention (goodVariableName, setGoodVariablename)
that we’e used here.

17

Example

export default function SimplestState() {

const [count, setCount] = useState(0)

function handleClick() { setCount(count + 1) }

return (
<VStack>
<Box> count = {count} </Box>
<Button onClick={handleClick} >
Increment Count!

</Button>
</VStack>

)

}

app/Apps/SimplestState.tsx

(Some styling has been
removed to reduce clutter
on this screen. Look at the
file for details}

18

Components don't change their state directly

20

export default function SimplestState() {

const [count, setCount] = useState(0)

function handleClick() {
setCount(count + 1)

}

return (
<VStack>
<Box> count = {count} </Box>
<Button onClick={handleClick} >
Increment Count!

</Button>
</VStack>

)
}

1. A setter is just a callback.

2. Every so often, React
collects all the set requests
it has received since the last
redisplay.

3. React executes all the
outstanding set requests.

4. Last, React redisplays the
component with the new
state.

Setters are not synchronous

• A setter doesn’t change the state immediately: it is
just a request to REACT to update the state when
this component is redisplayed.

• Consider the following:

src/app/Components/SimplestStatePlus3.tsx

Console methods: https://developer.mozilla.org/en-US/docs/Web/API/console
22

function handleClick() {
setCount(count + 1)
setCount(count + 1)
setCount(count + 1)

}

https://developer.mozilla.org/en-US/docs/Web/API/console
https://developer.mozilla.org/en-US/docs/Web/API/console
https://developer.mozilla.org/en-US/docs/Web/API/console

In general, an app in React is a tree of
components

• Each component has a single parent (except for the
root component in page.tsx)

• A component may have children, which are other
components

• A component initializes its children by passing them
properties (typically called "props")

23

The parent passes properties to its children
by name.

24

export default function HelloWorldWithAveryAndDave() {
return (
<VStack>

<HelloWorldWithName name='Avery'/>
<HelloWorldWithName name='Dave'/>

</VStack>
)

}

A component receives properties from its
parent as a record
• Properties are passed as a single argument to the

component

• Properties can not be changed by the component

export default function HelloWorldWithName(
props: { name: string }
) {
return (

<VStack>
<Heading>Hello, {props.name}!</Heading>

</VStack>
);

}
25

26

A component can pass handlers to its
children

// create two CountingButtons, and keep track of the total count.
import { CountingButton } from './CountingButton';

export default function App() {
const [globalCount, setGlobalCount] = useState(0)

function incrementGlobalCount() {
setGlobalCount(globalCount + 1)

}

return (
<VStack spacing='30px'>
<Box border="1px" padding='1'>Total count = {globalCount}</Box>
<CountingButton name="Button A" globalCount= {globalCount}

onClick={incrementGlobalCount} />
<CountingButton name="Button B" globalCount= {globalCount}

onClick={incrementGlobalCount} />
</VStack>

)
}

src/app/Components/TwoCountingButtons.tsx

27

A child communicates with its parent by
calling the handler it was passed

export function CountingButton(props: {
// display name of the button
name: string;
// global count from parent
globalCount: number;
// event handler to call when clicked
onClick: () => void;

}) {
const [localCount, setLocalCount]
= useState(0);

function handleClick() {
setLocalCount(localCount + 1);
props.onClick(); // propagate to parent

}
src/app/Components/CountingButton.tsx

28

return (
<VStack>
<Box>
local count for {props.name} = {localCount}

</Box>
<Box>
globalCount = {props.globalCount}

</Box>
<Button onClick={handleClick}>
Increment {props.name}!

</Button>
</VStack>

);
}

TwoCountingButtons demo

29

Setters initiate the redisplay process

1. A setter sends a request to React.

2. Every so often, React collects all the set requests
it has received since the last redisplay.

3. React executes all the outstanding set requests.

4. Last, React redisplays the component with the
new state.

5. When a component re-renders, its children retain
their state; the children are re-rendered only if
their props change.

30

React works hard to make redisplay fast.

• Updating the DOM in the browser is slow - it is vital that
React does efficient diff’ing

• Example: adding a new comment on a YouTube video
shouldn’t make the browser re-layout the whole page

• React makes re-rendering faster by updating only the part
that changes.

• This is called “Reconciliation”

31

A New Pattern: display a list of items using
map

export function ToDoListDisplay(props: { items: ToDoItem[],
onDelete:(id:string) => void })

return (
<Table>
<Tbody>
{

props.items.map((eachItem) =>
<ToDoItemDisplay item={eachItem}
key={eachItem.id}
onDelete={props.onDelete} />)

}
</Tbody>

</Table>
)

}

32

src/app/Apps/ToDoApp/ToDoListDisplay.tsx

But using map comes with a big gotcha.

33

export function ToDoListDisplay(props: { items: ToDoItem[],
onDelete:(id:string) => void })

return (
<Table>
<Tbody>
{

props.items.map((eachItem) =>
<ToDoItemDisplay item={eachItem}
key={eachItem.id}
onDelete={props.onDelete} />)

}
</Tbody>

</Table>
)

}

The ToDo App
export default function ToDoApp () {

const [todoList,setTodolist] = useState<ToDoItem[]>([])
const [itemKey,setItemKey] = useState<number>(0) // first unused key

function handleAdd (title:string, priority:string) {
if (title === '') {return} // ignore blank button presses
setTodolist(todoList.concat({title: title, priority: priority, key: itemKey}))
setItemKey(itemKey + 1)

}

function handleDelete(targetKey:number) {
const newList = todoList.filter(item => item.key != targetKey)
setTodolist(newList)

}

return (
<VStack>

<Heading>TODO List</Heading>
<ToDoItemEntryForm onAdd={handleAdd}/>
<ToDoListDisplay items={todoList} onDelete={handleDelete}/>

</VStack>
)

}

src/app/Apps/ToDoApp/ToDoApp.tsx

34

Typical Page

35

A new pattern: an input form

36

app/Apps/ToDoItemEntryForm.tsx

export function ToDoItemEntryForm (props: {onAdd:(item:ToDoItem)=>void}) {
// state variables for this form
const [title,setTitle] = useState<string>("")

const [priority,setPriority] = useState("")
const [key, setKey] = useState(0) // key is assigned when the item is created.

function handleClick(event) { --- } // on next slide…

return (
<VStack spacing={0} align='left'>

<form>
<FormControl>

<VStack align='left' spacing={0}>
<FormLabel as="b">Add TODO item here:</FormLabel>
<HStack w='200' align='left'>

<Input
name="title"
value={title}
placeholder='type item name here'
onChange={(event => {

setTitle(event.target.value);
console.log('setting Title to:', event.target.value)

})}
/>

The state of the form is kept in the state
variables of the component

One <Input> component for each blank
space in the form.

Update the state variable at every keypress

handleClick

37

// state variables for this form
const [title,setTitle] = useState<string>("")
const [priority,setPriority] = useState("")

function handleClick(event) {
event.preventDefault() // magic, sorry.
props.onAdd(title,priority) // tell the parent about the new item
setTitle('') // resetting the values redisplays the placeholder
setPriority('') // resetting the values redisplays the placeholder

}

Treat values of state variables as read-only

• State can hold any kind of JavaScript value,
including objects.

• But you shouldn’t change objects that you hold in
the React state directly.

• Instead, when you want to update an object, you
need to create a new one (or make a copy of an
existing one), and then set the state to use that
copy.

38

https://react.dev/learn/updating-objects-in-state

https://react.dev/learn/updating-objects-in-state
https://react.dev/learn/updating-objects-in-state
https://react.dev/learn/updating-objects-in-state
https://react.dev/learn/updating-objects-in-state
https://react.dev/learn/updating-objects-in-state
https://react.dev/learn/updating-objects-in-state
https://react.dev/learn/updating-objects-in-state

Array update cheat sheet

39

https://react.dev/learn/updating-arrays-in-state

https://react.dev/learn/updating-arrays-in-state
https://react.dev/learn/updating-arrays-in-state
https://react.dev/learn/updating-arrays-in-state
https://react.dev/learn/updating-arrays-in-state
https://react.dev/learn/updating-arrays-in-state
https://react.dev/learn/updating-arrays-in-state
https://react.dev/learn/updating-arrays-in-state

Use spread to update an object

40

const [position, setPosition] = useState({ x: 0, y: 0 });

position.y = 10;
setPosition(position); // this will not trigger a re-render

setPosition({ ...position, y: 10 }); // this works

const [anArray, setAnArray] = useState([1, 2, 3]);
setAnArray([...anArray, 4]); // this works, too

Review

• Now that you've studied this lesson, you should be
able to:
• Understand how the React framework binds data (and

changes to it) to a UI

• Create simple React components that use state and
properties

• In Module 09, we'll study another feature of React that
enhances modularity: hooks.

41

	Default Section
	Slide 1: CS 4530: Fundamentals of Software Engineering Module 3.6: React Basics
	Slide 2: Learning Objectives for this Lesson
	Slide 3: HTML: The Markup Language of the Web
	Slide 4: Rich, interactive web apps
	Slide 5: Typical properties of web app UIs
	Slide 6: Components represent widgets in object-like style
	Slide 7: Components Example: Like button component
	Slide 8: React is a Framework for Components
	Slide 9: React makes it easy to build rich, interactive web apps (perhaps with infinite scrolling of cats!)
	Slide 10: React Has a Rich Component Library
	Slide 11: Installing Chakra for next.js:
	Slide 12: Embedding HTML in TypeScript Aka JSX or TSX
	Slide 13: JSX/TSX Embeds HTML in TypeScript
	Slide 14: Hello World in React
	Slide 15: Start your app by importing it into src/app/page.tsx
	Slide 16: React Components are Little Machines
	Slide 17: Component State is Data That Changes
	Slide 18: Example
	Slide 20: Components don't change their state directly
	Slide 22: Setters are not synchronous
	Slide 23: In general, an app in React is a tree of components
	Slide 24: The parent passes properties to its children by name.
	Slide 25: A component receives properties from its parent as a record
	Slide 26
	Slide 27: A component can pass handlers to its children
	Slide 28: A child communicates with its parent by calling the handler it was passed
	Slide 29: TwoCountingButtons demo
	Slide 30: Setters initiate the redisplay process
	Slide 31: React works hard to make redisplay fast.
	Slide 32: A New Pattern: display a list of items using map
	Slide 33: But using map comes with a big gotcha.
	Slide 34: The ToDo App
	Slide 35: Typical Page
	Slide 36: A new pattern: an input form
	Slide 37: handleClick
	Slide 38: Treat values of state variables as read-only
	Slide 39: Array update cheat sheet
	Slide 40: Use spread to update an object
	Slide 41: Review

