CS 4530: Fundamentals of Software Engineering
Module 3.6: React Basics

Adeel Bhutta and Mitch Wand
Khoury College of Computer Sciences

© 2025 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Lesson

* By the end of this lesson, you should be able to:

 Understand how the React framework binds data (and
changes to it) to a Ul

* Create simple React components that use state and
properties

HTML: The Markup Language of the Web

* Language for describing structure
of a document

* Denotes hierarchy of elements

* What might be elements in this
document?

Read more on Digital economy o bs
MediaGuardian.co.uk

Interview Rio Caraeff

Vevo revolutionary

Universal's former mobile chief is leading the music industry’s fight to shake up online video. He reveals his
frustration with MTV. and savs why no one need own music if his site succeeds. Interview by Mark Sweney

We are about access: it
the only scalable

model for the music

industry; the question

is. how do you do that

Rich, interactive web apps

* Infinite scrolling of cats

sae<>inNOl & facebook.com ¢ olalo s
£ a PP s = +008 -
©0 s
o) Like (I Comment /> Share
ﬁ Write a comment... (ONCNTRT)

Dhennya Campos
September 14 at 5:56 AM - &

—-—

Andrea Gutierres
September 9 at 1:17 PM - @

Fago o que quero, onde quero humano g

Crédito .- @grarcia
Display amenu @amadosfelinos

Instagram A7V @O

a0 XL R

maverick 1. mayuhe0X. cascyblac.. playacat Mvieginabu. shix.pets philpandlr. po

a rikii_lucy_and_friends
\ Whitemarsh Island, Georgia

©rikki_lucy and friends

¥ Uked by shsx_pets and 144 others

rikki_ucy and_friends | am a ferocious wikd cat!l Fear my sharp claws and my terribie
gnashing teeth. And, then play with me and rub my belly... more

View all 2
babypeaches YV WV WV ¥

tord_odin_da_floof Hey Yoshi, Web meowmy gots home take all your toys on Hur bed
and see her reaction. My meowmy looked shocked @ @ @ W &3 &2 2y

Typical properties of web app Uls

* Each widget has both visual presentation & logic

 Some widgets occur more than once
e e.g., comment/like widgets

* Changes to data should cause changes to widget

* e.g., new images, new comments should show up in real
time

5 bowiespacecat

* Widgets have hierarchical structure

e Action on a widget may affect other widgets

* e.g., clicking on 'like' button executes some logic related
to the widget itself,

* It may also affect the widget that contains the ‘like’
button

Qv N

220 likes

bowiespacecat Sometimes | wonder how Bowie doesn’t get cramps from sleeping the
way he does &d

5

Components represent oo
widgets in object-like style

* Organize related logic and presentation
into a single unit

* Includes necessary state and the logic for
updating this state

* Includes presentation for rendering this state
into HTML

* Synchronizes state and visual presentation

* Whenever state changes, HTML should be
rendered again

QY N

220 likes

bowiespacecat Sometimes | wonder how Bowie doesn’t get cramps from sleeping the
way he does &

6

Components
Example: Like button component

 What does the button keep track of?
* Is it liked or not
* What post this is associated with

* What logic does the button have?

* When changing like status, send update to
server

e How does the button look?
e Filled in if liked, hollow if not

bowiespacecat Sometimes | wonder how Bowie doesn’t get cramps from sleeping the
way he does &

7

React is a Framework for Components

* Created by Facebook

* Powerful abstractions for describing Ul components
 Official documentation & tutorials: https://reactjs.org/

* Components are constructed in the browser (“front-end”)

* Key concepts:
e Embed HTML in TypeScript

e Track application “state”
e Automatically and efficiently re-render page in browser based on
changes to state
* But: some implementations of React allow components to be pre-
constructed in the server.

https://reactjs.org/

React makes it easy to build rich, interactive web
apps (perhaps with infinite scrolling of cats!)

& facebook.com & o o/ | e8e < > @-;) O = &instegramcom

nnnnnnnnnnnn

Built with React

S T 1 =, .
3 . E

Plus, AirBNB, Uber, Pinterest,
Netfllx Twitter and 8855 more

MDD W . 0000 tofuminou @ragdolis.rooseveltn_percival & Thanks!

I

Display amenu @amadosfelinos

React Has a Rich Component Library

chakra

® Getting Started
@ Styled System

B Components

% Hooks

san

% Community

mw

Changelog

B

Blog

LAYOUT
Aspect Ratio
Box

Center
Container
Flex

Grid

Q_ Search the docs

Components

£ K v2.2.9 v

Chakra Ul provides prebuild components to help you build your projects faster Here is an averview nf

the component categories:

Disclosure

Accordion Tabs

Feedback

Visuall

Avatar with badge

In some products, you might need to show a badge on the right corner of the avatar. We call this a

badge. Here's an example that shows if the user is online:

EDITABLE EXAMPLE

<Stack direction="'row' spacing={4}>
<Avatar>
<AvatarBadge boxSize='l.25em' bg='green.500' />
</Avatar>
{
<Avatar>
<AvatarBadge borderColor="'papayawhip' bg="'tomato' boxSize='1l.25em' />

</Avatar>
</Stack>

Installing Chakra for next.js:

* Just say:
npm i1 --save (@chakra-ui/react @chakra-ui/next-js

npm i --save (@emotion/react @emotion/styled framer-motion

11

Embedding HTML in TypeScript
Aka JSX or TSX

* How do you embed HTML in HelloMessage(props: IProps) {
TypeScript and get syntax checking? (
< >
* |dea: extend the language: JSX, TSX Hello, {props.name}
 JavaScript (or TypeScript) language, >
with additional feature that)
expressions may be HTML }

* It’s a new language

* Browsers do not natively run JSX (or
TypeScript)

* We use build tools that compile <
everything into JavaScript

ReactDOM. render(
< >

< name="'Satya' />
>,
document.getElementById('root"')

);

12

JSX/TSX Embeds HTML in TypeScript

 Example:
return <div>Hello {someVariable}</div>;

* HTML embedded in TypeScript

e HTML can be used as an expression
« HTML is checked for correct syntax

e Can use { expr } to evaluate an expression and return a
value

*eg., {5+2} {foo()}

* To wrap on multiple lines, wrap the TSX/JSX in
parentheses (...)

* Value of expression is a piece of HTML

13

[src/app/Apps/HelloWorld.tsx]

Hello World in React

import * as React from 'react’;
import { Heading, VStack } from '@chakra-ui/react’;

function HelloWorldComponent() {

return (

<VStack>
<Heading>Hello World</Heading>

</VStack>

)
}

“Return this HTML whenever the The HTML is dynamically
component is rendered” generated by the library.

14

Start your app by importing it into | src/app/pagetsx
src/app/page.tsx

'use client'; // this app is client-side only.

import App from './Apps/HelloWorldApp' // or from wherever you app lives
// import App from './Apps/HelloWorldDave'
// import App from './Apps/Appl’;

export default function HomePage() {

return (
<ChakraProvider>
<App />
</ChakraProvider>
)

15

React Components are Little Machines

* They start with input from their creator (parent) (props)
* They have additional local state ("component state")

* They retain their local state when their parent's state
changes

* They may change their local state in response to
external stimuli (button presses, etc.)

* They re-render when their local state changes, or when
they are re-created by their parent with different props.

16

Component State is Data That Changes

 State is created by useState.

* The state is accessed through state variables in
the component.

* The first variable is the accessor, the second is

the setter.
* The only way to change the value of astate import { usestate } from 'react’;
variable is with the setter function Foo() {

. const [count, setCount] = useState(©
* |In general, the state consists of several [] (0)

variables. }
 The component only re-renders after its local
state cha nges You could choose any names for the variable and its

setter; for this class, please follow the naming
convention (goodVariableName, setGoodVariablename)
that we’e used here.

[app/Apps/SimplestState.tsx]

Example

export default function SimplestState() {
const [count, setCount] = useState(9)

function handleClick() { setCount(count + 1) }

return (
<VStack>
<Box> count = {count} </Box> 4)
<Button onClick={handleClick} > (Some styling has been
Increment Count! removed to reduce clutter
on this screen. Look at the
</Button> file for details}
) </VStack> _)

Components don't change their state directly

export default function SimplestState() { 1. A setteris just a callback.

const [count, setCount] = useState(9) 2. Every so often, React
collects all the set requests
function handleClick() { it has received since the last
setCount(count + 1) .
) redisplay.
. (3. React executes all the
recurn .

VStacks outstanding set requests.
<Box> count = {count} </Box> 4. Last, React redisplays the
<Button onClick={handleClick} > component with the new

Increment Count!
</Button> state.
</VStack>
)

20

}

[src/app/Components/SimplestStatePlus3.tsx]
Setters are not synchronous

* A setter doesn’t change the state immediately: it is
just a request to REACT to update the state when
this component is redisplayed.

* Consider the following:

function handleClick() {
setCount(count + 1)
setCount(count + 1)
setCount(count + 1)

Console methods: https://developer.mozilla.org/en-US/docs/Web/APIl/console

22

https://developer.mozilla.org/en-US/docs/Web/API/console
https://developer.mozilla.org/en-US/docs/Web/API/console
https://developer.mozilla.org/en-US/docs/Web/API/console

In general, an app in React is a tree of
components

 Each component has a single parent (except for the
root component in page.tsx)

* A component may have children, which are other
components

* A component initializes its children by passing them
properties (typically called "props")

23

The parent passes properties to its children
by nhame.

export default function HelloWorldWithAveryAndDave() {
return (
<VStack>
<HelloWorldWithName name="'Avery'/>
<HelloWorldWithName name='Dave'/>
</VStack>

) N

A component receives properties from its
parent as a record

* Properties are passed as a single argument to the
component

* Properties can not be changed by the component

export default function HelloWorldWithName(
props: { name: string }
) {
return (
<VStack>
<Heading>Hello, {props.name}!</Heading>
</VStack>
)
}

25

~ @ Create Next App b4 + = O >

&€ 5 C @ localhost3000 ¥ o ® @ 9 o e

[0 C54530 [Tools & Google Drive {@ DuckDuckGe (G Google »» [a Al Bookmarks
Hello, Avery!

Hello, Dave!

A component can pass handlers to its
children

// create two CountingButtons, and keep track of the total count.
import { CountingButton } from './CountingButton';

export default function App() {
const [globalCount, setGlobalCount] = useState(9)

function incrementGlobalCount() {
setGlobalCount(globalCount + 1) [

} src/app/Components/TwoCountingButtons.tsx]

return (
<VStack spacing="'30px'>
<Box border="1px" padding="'1'>Total count = {globalCount}</Box>
<CountingButton name="Button A" globalCount= {globalCount}
onClick={incrementGlobalCount} />
<CountingButton name="Button B" globalCount= {globalCount}
onClick={incrementGlobalCount} />
</VStack>

) 27

b

A child communicates with its parent by
calling the handler it was passed

export function CountingButton(props: { return (
// display name of the button <VStack>
name: string; <Box>
// global count from parent local count for {props.name} = {localCount}
globalCount: number; </Box>
// event handler to call when clicked <Box>
onClick: () => void; globalCount = {props.globalCount}
}) { </Box>
const [localCount, setlLocalCount] <Button onClick={handleClick}>
= useState(9); Increment {props.name}!
</Button>
function handleClick() { </VStack>
setLocalCount(localCount + 1););

props.onClick(); // propagate to parent}

}
[src/app/Components/CountingButton.tsx]

28

TwoCountingButtons demo

Total count = 0

local count for Button A =0

globalCount = 0

Increment Button Al

local count for Button B = 0

globalCount = 0

Increment Button B!

29

Setters initiate the redisplay process

1. A setter sends a request to React.

2. Every so often, React collects all the set requests
it has received since the last redisplay.

3. React executes all the outstanding set requests.

Last, React redisplays the component with the
new state.

5. When a component re-renders, its children retain
their state; the children are re-rendered only if
their props change.

30

React works hard to make redisplay fast.

e Updating the DOM in the browser is slow - itis vital that
React does efficient diff’ing

* Example: adding a new comment on a YouTube video
shouldn’t make the browser re-layout the whole page

* React makes re-rendering faster by updating only the part
that changes.

* This is called “Reconciliation”

31

A New Pattern: display a list of items using
map

export function ToDolListDisplay(props: { items: ToDoItem[],
onDelete: (id:string) => void })
return (
<Table>
<Tbody>
{
props.items.map((eachItem) =>
<ToDoItemDisplay item={eachItem}
key={eachItem.id}
onDelete={props.onDelete} />)
}
</Tbody>
</Table>

}) [src/app/Apps/ToDoApp/ToDolistDisplay.tsx]

32

But using map comes with a big gotcha.

export function ToDolListDisplay(props: { items: ToDoItem[],
onDelete: (id:string) => void })
return (
<Table>
<Tbody>
{
props.items.map((eachItem) =>
<ToDoItemDisplay item={eachItem}
key={eachItem.id}
onDelete={props.onDelete} />)
}
</Tbody>
</Table>

)
¥

33

The ToDo App [src/app/Apps/ToDoApp/ToDoApp.tsx]

export default function ToDoApp () {
const [todolList,setTodolist] = useState<ToDoItem[]>([])
const [itemKey,setItemKey] = useState<number>(0) // first unused key

function handleAdd (title:string, priority:string) {
if (title === "'') {return} // ignore blank button presses

setTodolist(todolList.concat({title: title, priority: priority, key: itemKey}))
setItemKey(itemKey + 1)

}

function handleDelete(targetKey:number) {

const newlList = todolList.filter(item => item.key != targetKey)
setTodolist(newlList)

}

return (

<VStack>
<Heading>TODO List</Heading>
<ToDoItemEntryForm onAdd={handleAdd}/>

<ToDolListDisplay items={todoList} onDelete={handleDelete}/>

</VStack>
) 34

Typical Page

Add TODO item here:

type item name here

TITLE

first item

second item

third item

TODO List

type priority here

PRIORITY

11
22

optional

Add TODO item

DELETE

a

35

app/Apps/ToDoltemEntryForm.tsx

A new pattern: an input form

export function ToDoItemEntryForm (props: {onAdd:(item:ToDoItem)=>void}) {

// state variables for this form

const [title,setTitle] = useState<string>("")
const [priority,setPriority] = useState("")

The state of the form is kept in the state

const [key, setKey] = useState(0) // key is assigned when the item is cr& variables of the component
function handleClick(event) { --- } // on next slide..
return (
<VStack spacing={0@} align="left'>
<form>
<FormControl>

<VStack align="'left' spacing={0}>
<FormLabel as="b">Add TODO item here:</FormLabel>
<HStack w='200"' align="'left'>

<Input
ngme=--tit1e-- One <Input> component for each blank
value={title} space in the form.
placeholder="type item name here'
onChange={(event => { Update the state variable at every keypress

setTitle(event.target.value);
console.log('setting Title to:', event.target.value)

1}
/>

36

handleClick

// state variables for this form
const [title,setTitle] = useState<string>("")
const [priority,setPriority] = useState("")

function handleClick(event) {
event.preventDefault() // magic, sorry.
props.onAdd(title,priority) // tell the parent about the new item
setTitle('") // resetting the values redisplays the placeholder
setPriority('"') // resetting the values redisplays the placeholder

37

Treat values of state variables as read-only

e State can hold any kind of JavaScript value,
including objects.

e But you shouldn’t change objects that you hold in
the React state directly.

* Instead, when you want to update an object, you
need to create a new one (or make a copy of an
existing one), and then set the state to use that

copy.

https://react.dev/learn/updating-objects-in-state

38

https://react.dev/learn/updating-objects-in-state
https://react.dev/learn/updating-objects-in-state
https://react.dev/learn/updating-objects-in-state
https://react.dev/learn/updating-objects-in-state
https://react.dev/learn/updating-objects-in-state
https://react.dev/learn/updating-objects-in-state
https://react.dev/learn/updating-objects-in-state

Array update cheat sheet

adding

removing

replacing

sorting

avoid (mutates the array)

push, unshift

pop, shift, splice

splice, arr[i] = ... assignment

reverse, sort

prefer (returns a new array)

concat, [...arr] spreadsyntax (example)

filter, slice (example)

map (example)

copy the array first (example)

https://react.dev/learn/updating-arrays-in-state

39

https://react.dev/learn/updating-arrays-in-state
https://react.dev/learn/updating-arrays-in-state
https://react.dev/learn/updating-arrays-in-state
https://react.dev/learn/updating-arrays-in-state
https://react.dev/learn/updating-arrays-in-state
https://react.dev/learn/updating-arrays-in-state
https://react.dev/learn/updating-arrays-in-state

Use spread to update an object

const [position, setPosition] = useState({ x: 0, y: 0 });

position.y = 10;
setPosition(position); // this will not trigger a re-render

setPosition({ ...position, y: 10 }); // this works

const [anArray, setAnArray] = useState([1l, 2, 3]);
setAnArray([...anArray, 4]); // this works, too

40

Review

* Now that you've studied this lesson, you should be
able to:

* Understand how the React framework binds data (and
changes to it) to a Ul

* Create simple React components that use state and
properties

* In Module 09, we'll study another feature of React that
enhances modularity: hooks.

	Default Section
	Slide 1: CS 4530: Fundamentals of Software Engineering Module 3.6: React Basics
	Slide 2: Learning Objectives for this Lesson
	Slide 3: HTML: The Markup Language of the Web
	Slide 4: Rich, interactive web apps
	Slide 5: Typical properties of web app UIs
	Slide 6: Components represent widgets in object-like style
	Slide 7: Components Example: Like button component
	Slide 8: React is a Framework for Components
	Slide 9: React makes it easy to build rich, interactive web apps (perhaps with infinite scrolling of cats!)
	Slide 10: React Has a Rich Component Library
	Slide 11: Installing Chakra for next.js:
	Slide 12: Embedding HTML in TypeScript Aka JSX or TSX
	Slide 13: JSX/TSX Embeds HTML in TypeScript
	Slide 14: Hello World in React
	Slide 15: Start your app by importing it into src/app/page.tsx
	Slide 16: React Components are Little Machines
	Slide 17: Component State is Data That Changes
	Slide 18: Example
	Slide 20: Components don't change their state directly
	Slide 22: Setters are not synchronous
	Slide 23: In general, an app in React is a tree of components
	Slide 24: The parent passes properties to its children by name.
	Slide 25: A component receives properties from its parent as a record
	Slide 26
	Slide 27: A component can pass handlers to its children
	Slide 28: A child communicates with its parent by calling the handler it was passed
	Slide 29: TwoCountingButtons demo
	Slide 30: Setters initiate the redisplay process
	Slide 31: React works hard to make redisplay fast.
	Slide 32: A New Pattern: display a list of items using map
	Slide 33: But using map comes with a big gotcha.
	Slide 34: The ToDo App
	Slide 35: Typical Page
	Slide 36: A new pattern: an input form
	Slide 37: handleClick
	Slide 38: Treat values of state variables as read-only
	Slide 39: Array update cheat sheet
	Slide 40: Use spread to update an object
	Slide 41: Review

